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Abstract: - The mathematical modelling and computer simulation are presented for the complex flow in thin gap 
channel due to alternating volumetrically distributed mass forces. The flow equations and obtained analytical 
solutions for limit cases are considered in the cylindrical coordinate system with the axis directed along the 
channel, which is rotating around its axis. The channel is placed inside the cylinder on the edge of the circular 
horizontal disk, which is rotating around vertical axis in its centre. The two rotations around different 
perpendicular axes create complex unknown features in a flow due to the alternating centrifugal and Coriolis 
forces, which substantially vary by the angle. The centrifugal force from the disk rotation is directed to its edge, 
while the centrifugal force due to rotation of the channel is acting by the channel’s radius. As a result, the two 
different centrifugal forces are directed counter currently in one side of the channel and vary by the angle up to 
adding of the two of them in the same direction in the opposite side of the channel. The conditions may fit to the 
strong cavitation regime inside the volume of fluid flow due to a stretching of the liquid in some locations. 
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1 Introduction and the Problem 

Statement 
 
 
1.1 Description of the System 
The complex flow in the rotational channel placed on 
the rotating horizontal disk is considered according 
to the schematic shown in Fig. 1: 

 
Fig. 1. Schematic of the flow in channel placed on 

the disk rotating around vertical axis 

Horizontal disk is rotating around the vertical axis 
and the gap flow is considered in the channel placed 
on this disk. The channel rotates inside the cylinder 
around the tangential axis to the edge of disk with the 
radius R0. The centrifugal forces are shown in Fig. 2: 

 
Fig. 2 Centrifugal forces in flow due to rotation of 

channel and rotation of disk on horizontal plate 
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Thus, in the situation 1 in Fig. 2, the forces act 
counter currently causing a high stretching in a liquid 
(condition for the cavitation process). Centrifugal 
forces due to the disk’s rotation (red colour) are 
directed in all points of the flow to the left in picture 
(edge of the disk), while centrifugal forces due to 
rotation of the cylindrical channel (black in colour) 
act by the radius of the channel. 

The rotation of the horizontal disk is going around 
the vertical axis with the speed  . The other rotation 
is done with the speed   regarding the tangential 
axis to the circle of main rotation of the horizontal 
disk. The internally rotating channel with the radius 
r0 is located on the disk inside the cylinder oriented 
along the tangential line (see Fig. 1), at the distance 
R0 from the central vertical axis z (x=y=0) of the 
horizontal disk.  

The liquid is pumped into the rotating channel. 
For example, by rotation with the speed of 3000, 
6000, 12000 and 18000 rpm (rpm=1/60 1/s), 
respectively. It results in the next estimations for the 
flow velocity and for the pressure at the inlet: 

Table 1 Parameters of rotation and flow in channel 

 , 
1rps= 
60rpm 

3000 
rpm= 
50 1/s 

6000  
rpm= 
100 1/s 

12000 
rpm= 
200 1/s 

18000 
rpm= 
300 1/s 
 

V, m/s 15 30 60 90 

p Bar 1.1 4.5 18 38 

N, kW 0.113 0.452 1.81 4.07 

 
The last row of the Table 1 shows the power for 

corresponding rotation by the mass flow rate 1 kg/s. 
Here it is 1rps=1/s. Let us consider water flow going 
in a gap between the two rotating cylindrical 
channels. If accept that the pressure difference is just 
a half of the corresponding p , then one can get for 
the square 2.52*10-6 m2 with this situation, the values 
of the force as follows: 3.1, 12.4 and 49.6 N, 
respectively, for  =6000, 12000, 18000 rpm. 
Neglecting the energy loses, with the 100 tilted 45 
degree holes between the internal channels, we get 
the rotation force 310, 1240 and 2790 N. This creates 
approximately the same rotation speed as the main 
one:  =6600, 13200 and 19800, respectively.  
 
 

1.2 Cylindrical Coordinates in Channel  
The rotating coordinate system can be done with the 
vertical axis coinciding with z or shifted from the 
central axis ( 0x y  ) on some distance R0 as 

shown in Fig. 1. The rotation is going around the 
vertical axis z and also around the axis tangential to 
the circle of the radius R0. 

Intensive rotation and mixing flow are fascinating 
phenomena and may be highly effective in a number 
of applications: engineering, technological, natural 
processes [1-5]. Many theoretical aspects have been 
studied for the diverse rotational flows. Nevertheless, 
it is still the problem to dig more in deep for many 
theoretical, as well as practical applications. The 
described system was not considered yet. 

In the local cylindrical coordinate system ( , , )r z  
connected to the channel, the coordinate surfaces are 
cylinders r const , semi-planes const   and 
planes z const . Coordinate z is now directed by the 
axis of the cylinder because the paper is focused on 
the flow regimes in the gap of two rotating channels.  
 

 

1.3 Negative Pressure and Cavitation due to 

the Volumetric Stretching of Liquid  
In the above analysis it is seen that the liquid may get 
into stretching conditions in some local points, where 
the unknown dramatic regimes with negative 
pressure and cavitation are available. Normally 
cavitation is supposed to be under depressurization 
below the saturation level, due to which the liquid 
starts vaporizing in such local region. As concern to 
negative pressure corresponding to the local 
stretching of liquid that can also break the bonds of 
liquid molecules causing the cavitation process, it is 
much less known.  

A stretched liquid is a liquid under negative 
pressure. This is an unstable, metastable state of a 
liquid, possible due to the Van der Waals forces of 
attraction between the molecules of the liquid - both 
between themselves and between them and the walls 
of the vessel. Real gas - in the general case - the 
gaseous state of a really existing substance [6], a gas 
that is not described exactly by the Clapeyron - 
Mendeleev equation, in contrast to its simplified 
model - a hypothetical ideal gas strictly obeying the 
such equation.  

Normally, a real gas is understood as a gaseous 
state of a substance in the entire range of its existence 
but there is another classification, according to which 
a highly superheated vapour is called a real gas, the 
state of which slightly differs from the state of an 
ideal gas, and superheated vapour, the state of which 
differs significantly from an ideal gas, and saturated 
vapour (two-phase equilibrium system liquid - 
vapour), which does not obey the laws of an ideal gas 
at all [6]. This phenomenon can be observed in the 
Torricelli experiment. When lifting a tube filled with 
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mercury, sealed from one end of the tube, the 
Torricelli void does not appear immediately. And 
with careful lifting of the tube, it is possible to 
achieve that the top of the tube completely filled with 
mercury is higher than the level corresponding to the 
current atmospheric pressure.  

Similarly, mercury in the medical thermometer, 
after the contact with the body has ceased, is in a 
stretched state. And also it is in the maximum 
thermometer when the temperature begins dropping 
after the maximum [7].  

Water can also be stretched, but this is only 
possible if it is thoroughly cleaned and degassed. In 
experiments with such water, the short-term tensile 
stresses of 23-28 MPa were achieved [8]. Technically 
pure liquids containing suspended solids and the 
smallest gas bubbles cannot withstand even minor 
tensile stresses. Nevertheless, this is a method of 
raising liquid that is used in trees [9].  

Superheated (metastable) liquid heated above its 
boiling point causes such specific dynamic 
phenomena as explosive boiling due to a stored heat, 
instability of the liquid-vapour interface, and the 
formation of a front of phase transition in a number 
of the energy and technological regimes [10]. Water 
belongs to a class of substances that presents density 
anomalies [11]. These conditions may cause the 
different unique phenomena, e.g. cavitation and 
abnormal fluid (e.g. water) behaviours.  

The negative pressure despite long history of 
study is still very little known phenomena [10-26], 
e.g. paper [10] shows using a few approaches that a 
high average stress difference on the interface of 
phase change is due to the negative stresses in the 
interface because the water belongs to a class of 
substances with density anomalies.  

The negative pressure region of phase diagram 
proves to be paramount in understanding the unusual 
behaviour of this class of substances. It was 
demonstrated using theoretical arguments and 
experimental evidence that any condensed (solid or 
liquid) phase can exist in absolute negative pressure 
regimes, while the same is not true for gas phases. 
While in a gas phase pressure and density are 
proportional, this proportionality does not 
necessarily occur in condensed phases.  

It is convenient to extend definition of pressure. 
In liquids and solids, pressure ought to be treated as 
3x3- tensor P, rather than scalar [13]. The authors 
[11] have shown how the negative pressure region of 
the phase diagram proves to be paramount in 
understanding the unusual behaviour of this class of 
substances and in liquids and solids.  

Huygens, Boyle, Papen, etc. made several 
experiments during a Royal Society Meeting [14] but 

they did not provide any explanation to the 
experiment because adhesion and cohesion where not 
known for them yet. To generate a very high negative 
pressure in a liquid one ought to use extremely small 
amounts of sample [15-24]. Several different 
methods were developed to generate negative 
pressures in liquids and a few hundreds of MPa were 
achieved. For example, the dynamic methods 
produce negative pressures for a very short period of 
time using the sudden pulling or ultrasonic radiation.  

The study of boiling superheated and stretched 
liquids has been performed in a series of papers [27-
31]. The suppression effect for cavitation centres of a 
heterogeneous nature with the low-boiling impurities 
was discovered experimentally. The results on 
suppression of heterogeneous cavitation centres 
present practical possibilities for control of the 
boiling centres in a superheated stretched liquid. The 
effect of a gas dissolved in a liquid on the cavitation 
strength of liquids and the possibility of suppressing 
the centres cavitation by gas dissolved in liquid and 
other low-boiling impurities were studied as well.  

The effect of a pulsed electric field on the limiting 
overheating of liquid at negative pressures was 
revealed. It was shown that for the short-term 
exposure to an electric field that does not lead to the 
formation of a noticeable amount of electrolysis 
products, the tension field 107 V/cm is not enough to 
change the temperature of the limit liquid 
overheating. The growth rate of vapour bubbles in the 
superheated stretched liquid was experimentally 
measured for the first time. Analysis of the factors 
determining the growth rate of vapour bubbles is very 
interesting. It was shown that a steady state of steam 
is not reached in a growing bubble in a stretched 
superheated liquid because it has not enough time for 
this process.  

The physical situation described in the present 
paper has revealed negative pressure oscillations due 
to a strong volumetric variation of the mass forces in 
a space by the level and direction. The new features 
as oscillations of the flow parameters and pressure 
oscillations from the high positive to the high 
negative values in liquid were revealed in our 
numerical simulation as shown in the paper.  
 
 
2 Mathematical Model Development  
 
 
2.1 Flow Equations Accounting Volumetric 

Alternating Mass Forces 
The Navier-Stokes equation array for the flow in the 
gap between rotating cylindrical channels, with 
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account of the two centrifugal forces and the Coriolis 
force are written as follows 
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. 

Here are:  , , , , ,v u v w p T  - density, velocity 
vector, pressure and temperature, respectively, µ, - 
dynamic viscosity and heat conductivity, /   - 
kinematic viscosity coefficient, cV- heat capacity, 
Qc - internal heat generation (e.g. due to cavitation). 
The water density is constant (incompressible liquid) 
by comparably small temperature variation, while for 
the vapour it is a function of time and space 
(depending on temperature, pressure).  

2.2 Simplification of the Equations  
In the above general form, the partial differential 
equation (PDE) array (1) is simplified according to 
the specific flow conditions. A flow in a thin gap 
between the channels rotating around their axis with 
a frequency ,  is considered. The centrifugal force 
due to rotation of the channel is acting by its radius; 
r0 is a radius.  

The width of the narrow gap between the channels 
is small comparing to the radius r0. Ω is a frequency 
of the disk’s rotation with a channel on it, which 
creates the centrifugal force acting by the radius R0 in 
the plane of disk’s rotation. These forces are 
projected on the coordinates r and ,  with account of 
the distance from the centre of rotation, where the 
channel is moving with constant speed around the 
central vertical axis by the tangential trajectories. The 
centrifugal and Coriolis forces due to rotations are 
accounted in the equation array (1).  
 
2.2.1 Stationary inviscid flow 

For the stationary inviscid flow assuming that the 
flow velocity across the thin gap is small comparing 
to the two other velocity components, the following 
rough estimations were got: 
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. 

Here  C   is an arbitrary function calculated from 
the boundary conditions. The above estimations 
show specific feature by the upper and bottom points 
in the channel, where the velocities and pressure have 
infinity as peculiarity. Also the estimations show 

2w v . Despite the equations are complex even 
for the numerical solution, this estimation is valuable 
for understanding the features in liquid movement 
inside the gap. It is used for further estimations 
together with the other models.  

The equation array (2) shows that the flow is 
dramatically oscillating by both coordinates z,  . 
From (2) follows that there are singularity points up 
and down in a rotating channel, where the pressure 

2 2 2

2
u v v v w w u

r r r z r r z
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and velocity have breaks and abrupt growing, which 
can be damped by viscous forces neglected here.  
 
2.2.2 Correlation between axial and rotational 

velocities in rotating channel by 0  : 

From the second equation of the system (2) also 
approximation follows in a region by 0  : 

 2 2 01
2

2
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where from yields 
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The first equation shows that dynamic pressure is 
proportional to the flow velocity along the axis 
(inflow to the channel in particular), the radius of a 
channel and the ratio 2 /  .  C  =0 in case of 
symmetrical distribution by the angle. 

The higher is rotation in the channel, the higher is 
pressure, while the main rotation decrease the 
pressure (here it is acting against the centrifugal force 
due to rotation in the channel). It is clearly seen that 
rotational flow is directed from the line 0   up and 
down – the positive and negative rotational flow 
velocity v . As far as 2 0v  , it yields 
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The first region corresponds to a negative velocity 
along the axis, which is interesting for use of the 
reactive force from the channel. The other region 
covers small negative values and all positive ones. 

For the case of small ratio of the rotation speeds,
4 4/ <<1 , satisfying the condition 
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because all other values are of the same order, the 
above conditions are simplified in a linear approach: 
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We have applied the Taylor series expansion up to 
the linear terms by a small value above. 

If both rotations are counter clockwise and 
velocity along the axis in the channel is negative so 
that tangential line to the main rotation circle is 
directed the same as the rotation velocity, then 
negative w means that flow at the exit from the 
channel is creating the reactive force to the main 
rotation.  

The real values of the velocity are in case of 
4

0
4

02
1 1
2

R

r

  
  

 
,  

4
0

4
0

2 1
2

R

r




  . 

 
2.2.3 Correlation between axial and rotational 

velocities in rotating channel at the    : 

On the opposite side (   ) we have 
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where from the dynamic pressure is negative (like the 
water from the right side is sucked to the left side of 
the rotating channel). The rotation velocity is small. 
For example, by C=0 it is estimated as  
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For the case of small ratio of the rotation speeds,
4 4/ <<1 , when the condition is satisfied 
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because all other values are of the same order, the 
above conditions are simplified in a linear approach: 
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The second case does not correspond to the need of 
using reactive force of the exit flow from the channel 
in pushing the counter clockwise main rotation. 
 
 
2.3 Estimation of the Stationary Flow of 

Incompressible Liquid 
For the flow in a narrow gap we assume that a flow 
velocity u in the cross sectional direction can be 
neglected. Then we have only the rotational and 
longitudinal components of the velocity (v, w) in the 
gap of the channels. The flow gradient across the thin 
gap  is accounted ( / 0u r   ) because despite the 
low velocity it may be remarkable due to small width 
of the gap. Thus, from (1) follows: 
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The liquid is incompressible and the pressure 
gradient across the gap is supposed negligible due to 
the thickness of the gap, / 0p r   .  
 
2.3.1 The Isothermal Flow 

The isothermal flow is analyzed further for 
simplicity; therefore, the energy equation is omitted 
in the equation array (3).  

Due to a small width of the gap it is assumed that 
the coordinate across the gap is nearly constant (r=r0– 
the centre line of the gap), and / 0   - stable 
rotational flow inside the channel with a constant 

rotation speed ( / 0, / 0v p       ). Then the 
gradients of the cross flow velocity /u   , /u z   
are small because u is small and the characteristic 
ranges of the rotational and longitudinal (along the 
axis of the channel) coordinates are much higher than 
the cross sectional distance in a gap.  

The above stated allows simplifying the array (3): 
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0 0( cos ) sin 2 sinr R u w         . 

If velocity across the gap is totally neglected but 
the rotational velocity has non-zero gradient, e.g. 

/ 0v    , then from the equation array (3) yields 
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+  2
0 0( cos ) sin 2 sinr R u w        ,

 where / 0p     in case of uniform rotation. In a 
stationary case, when the velocity component v is due 
to the rotation and constant by φ, then from the first 
equation (5) follows / 0w z   . And the second 
equation (5) determines a flow velocity v due to 
rotation.  
 
2.3.2 The Inviscid Approximation 

For inviscid approximation, (5) is more simplified: 
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 where from the following robust estimation is got 
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or, with account of 0v r , in a first approach by 
governing rotational flow, (7) yields the following: 
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where from follows that by two rotations, the axial 
velocity is determined by the angle of rotation and the 
ratio of radiuses and rotation speeds.  

For example, by  =0 there are the next limit 
cases: 0 0R r , 2

0 00.5 2 /w R r    , so that by 

  : 0 / 2w R   because 0 0R r   and  

/ 1  . By    : 2
02 /w r    due to 

0 0R r  , / 1   . This has a reasonable 
physical explanation: with a higher speed of the 
channel’s rotation, the axial flow in a channel is 
substantially higher than the rotational one.  

Thus, by the main rotation overwhelming by a 
speed the channel’s rotation, the flow along the axis 
is going with a half of the tangential velocity caused 
due to the main rotation. But in the opposite case, 
when channel is rotating faster than the disk, the 
tangential velocities at the edge of channel and at the 
edge of the disk can be of the same order. Then the 
axial velocity in a channel is much higher than the 
tangential one. And it can be negative or positive 
depending on the directions of the rotations.  

The task is considered in cylindrical coordinate 
system attached to the tangential line of the disk. For 
example, 0 00.5( cos ) 20 / cosw R r v     is got by 

/ 10   , so that much higher flow velocity is along 
the axis comparing to the rotation in a channel, with 
the picks up and down in gap, where cos =0.  

Despite the centrifugal and Coriolis forces caused 
by two different rotations act in variable by angle 
directions, these points of dramatic grow and changes 
of the directions ( / 2 n    , n=1,2,…) look 
something strange. Therefore, we consider the above 
estimations as the very approximate ones.  
 
2.3.3 Viscous flow in the narrow gap 

Also it is interesting to consider the viscous flow due 
to the small gap (high viscous and capillary forces) 
and high viscosity (like the conditions in the Tesla 
turbine for example). Neglecting the convective 
terms and derivatives by r yields from (5) the 
following: 
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         (8) 

+  2
0 0( cos ) sin 2 sinr R u w        .      

Numerical solution of the equation array (8) with 
the boundary conditions (all values in SI, Ω=50, 
𝜔=150 r0=0.06, R0=0.18, liquid - water): 

p=105, u=0, v=3, w=-0.5, 

is presented in Figs 3, 4 for the cross section z=-1. 
The most pulsations of rotational velocity are to the 
left side of the channel. Pressure is increased in this 
region up to 20 times, and the most intensive flow 
along the axis is at   . All parameters of the flow 
are highly oscillating (  is assigned as x in figures). 
 
2.3.4 The test estimation for the rotational flow 
Some more similar estimation was done for the 
following parameters: r0=0.05 m, Ω=2400rpm=40 
1/s, ω=24000rpm=4001/s, 400/ cos 8w   m/s, 

20v    m/s; Ω=20 1/s, ω=100 1/s, 5v    m/s, 
100/ cos 4w    m/s. Velocity is growing by   

from 0 to 𝜋/2 but decreasing by   from 0 to −𝜋/2 
because the resulting centrifugal force is growing 
from 0 up and down by   counter-currently, flow is 
going to  =𝜋 from both sides by the angle. 

The peculiarity analysis of the flow in the 
considered system of 2 rotations is done considering 
one more problem applying the other approach, to 
compare the results. Let us perform transformation of 
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the equation array (6) with account of the above 
considered so that to get the following: 
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2
0 0 0( cos ) sinr R r     , 

and then integrate the equation obtained by  : 

2 2 2
0 0 00.5 (0.5 cos cos )

p
v r r R 


      

2 2
02 ln cosr  , 

where the constant of integration was taken zero by 
 =0. In the obtained expression we have ln0=-, by 

/ 2  =0, which means that as in the previous 
analysis it is got one more the same result about the 
singular points of the pressure at the top and bottom 
of the channel. This coincides with the previous 
analysis supporting it ones more. The same with the 
right and left part of the channel ( =0 and  =π).  
Total pressure in a flow to the right and to the left of 
the channel is respectively: 

  
 

  
Fig. 3 Rotation fluid velocity v and pulsation 

velocity u across the gap  

                2 2
0 0 00.5 (0.5 )p v r r R     ,  

              2 2
0 0 00.5 (0.5 )p v r r R     .       (9) 

  
 

  
Fig. 4 Flow pressure and velocity w along axis  

As shown in (9), to the right it is negative by 
R0>r0, and to the left – positive. This is physically 
reasonable because the centrifugal forces due to the 
two rotations (around the main axis and in channel 
around its axis) are directed opposite to the right, 
while they are acting in the same direction to the left 
as shown in Fig. 1 and Fig. 2. The above estimations 
revealed that the mixing and pressure variation in the 
channel is highly intensive and it is rapidly changing 
in the domain depending on the angle of rotation  .  

The discussed conditions are perfect for the 
cavitation process inside the volume, which may 
produce the internal heat generation and other effects. 
In this simplified model, the curvilinear channels 
were not considered because they complicate the 
model dramatically. But as it was shown above, the 
mixing and pressure variation, even without account 
of the curvilinear walls, are so high to fit for intensive 
cavitation processes inside the channel perfectly. 
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3 Flow Stability Analysis  
Let us consider the equation array (1) for the 
incompressible isothermal flow representing the 
parameters of the flow as a stable average value plus 
small deviation in a wavy form:  

'u u u  , 'v v v  , 'w w w  ,  
           'p p p  ,  ' i kz m t

v Ve
  

 ,              (10) 
 ' i kz m t

w We
  

 ,  ' i kz m t
p Pe

  
 . 

After substitution of the introduced parameters 
(10) into (1) and linearization of transformation, the 
equation array similar to (1) is got for the average 
parameters. The following equations for the 
perturbations of the parameters qere obtained: 

0 0U imV Wikr   ,   

 2
0 0 0

2 2
im v

i U vU wikU V Vim U
r r r


        

                      2 cosV W    ,                 (11) 

0 0

im dv im
vV wikV W P i V

r dz r



      

 
2

2
2

0

1
2 sin

m
U W V k V

r
  


    

 
 
 

, 

  
0

im dw ik
vW Vw W ikWw i W P

r dz



       

 
2

2
2

0

2 sin cos
m

V U W k W
r

      
 
 
 

. 

 
 
3.1 Estimation of the Flow Peculiarities 
It is clearly observed from the equation array (11) that 
such wavy oscillations do not satisfy the equations 
due to dependence on the angle φ. Therefore, let us 
estimate the corresponding peculiarities.  

If we consider the supplied flow rate q (l/s, or 
kg/s) due to the main rotation with the speed   (1/s), 
then we can state that the power introduced by this 
rotation is approximately N=  

2
0q R   (W). Say, it is 

done by the three channels, the power of each is 
ideally about Nt=N/3=  

2
0q R  /3.  

 
3.1.1 Dependence of Two Rotation Speeds 

Without the looses in the system we can estimate the 
power of the channels by their rotation of the one 
third of total flow rate, Nt=  

2
0 / 3q r . Thus, it 

follows  
2

0q R  /3=  
2

0 / 3q r , where from yields 
the following approximate correlation: 

                         0 0/R r   .                         (12) 

For 0R =187 mm, 0r =63 mm - for the outer 
channel and 57 for the inner channel. Both channels 
are of the width 3 mm. It is distributed flow by the 
rotation and movement along the axes in the channel. 
Rotational flow is the most. Let us take for the 
estimation 0r =60 mm, then it results from (12): 

3.1   . With account of the losses it may be taken 
approximately 3   . 

 
3.1.2 Equations for Amplitude Perturbations 

Now from the equations (11) follows: 
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The obtained equation array (13) shows that the 
dependence from the angle of rotation is principal 
and cannot be neglected. Therefore, it can be used for 
estimation of the oscillations but not for the precise 
solution. If the wave numbers m, k are real values, 
then only harmonic perturbations are available, 
which are varying in time.  
 
 
3.2 Analysis of the Perturbations 
From the equation array (13) yields the following: 
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,                (14) 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.20 Ivan V. Kazachkov

E-ISSN: 2224-347X 210 Volume 15, 2020



 
0

m
P W vW Vw Ww

k k r

 
     ,   

 
2

2
2

0

2 sin cos
dw m

W k V U
dz r

      
  
  

  
, 

0

0

r m
P v wk V

m r


  
  
  

  
,       

2
2

2
0

1
2 sin 6

dv m
W U V k V

dz r
 


     

  
  

   
. 

It is accounted that all equations must satisfy 
separately for their real and imaginary parts. With 
account of 0U  , it can be got 0U   from the 
previous estimations. Then 2

02 m Ur   , or 
   , which means very high frequency of the 
oscillations without the instability (strong shaking). 
And further, the equation array (14) is  
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The two contradictions to the assumptions made 
follow from the (15): dependence of the perturbations 
on the angle φ and impossibility to satisfy the 
equations 3 and 5 due to    . Therefore, let us 
consider perturbations  i kz m t

e
    with r ik k ik  , 

r ii    , where ,r ik k  are the real and imaginary 

parts of the wave number k , similarly - ,r i  . Then 
the perturbations have the following form: 

   r r i i
i kz m t i k z m t k z t

e e e
         

 , so that the 
perturbations may be wavy by z, φ and time, and 
exponentially growing or decreasing by the axis, 
while the law by time must be got from solution of 
the equations. Thus, from (15) yields 0iU k Wr and: 
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Here r  determines the oscillation frequency by 

time, while i  is responsible for growing of the 
oscillations ( 0i  ) or their decreasing ( 0i  ) in 

time. The first four correlations for the ,r i   and 
,U W  may be transformed from (16) as follows: 
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.                                     

Detail study of the (16), (17) is the separate subject. 
 
 
4 Conclusion 
The modeling revealed interesting features of the 
rotational flow due to the simultaneous rotations in 
two perpendicular directions. The flow equations 
with account of the two centrifugal and Coriolis 
forces were analyzed. Complex flow in a gap of the 
channel located on the disk rotating around the 
vertical axis was considered at first.  

The conditions created in a flow by alternating 
volumetric mass forces can fit for the intensive 
stretching of a liquid, cavitation and other interesting 
phenomena. The revealed unique processes will be 
studied more in deep, both theoretically as well as 
experimentally as far as they may have strong 
applications. 
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